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An experimental investigation of the stability 
of plane shock waves 

By K. C .  LAPWORTH 
Department of the Mechanics of Fluids, University of Manchester 

(Received 12 February 1959) 

The stability of plane shock waves was measured in a shock tube by perturbing 
the primary shock wave, formed on rupturing the diaphragm, by means of thin 
wedges. A time-record of the shape of the shock wave after it passed the wedges 
and travelled along a channel of constant cross-section was obtained by Schlieren 
photography. Analysis of the photographs enabled the rate at which the shock 
wave recovered its plane shape to be determined and this, together with the 
detailed shape of the wave at various instants, was compared with the first-order 
theory of Freeman (although all the conditions assumed in the theory could not 
be faithfully reproduced in the experiments). 

For shock-wave Mach numbers of 1.165, 1.41 and 1.60, the time-rate of decay 
of the perturbations was found to agree quite well with the theoretical value, but 
the amplitudes of the perturbations were much larger than those given by the 
theory. 

The experiments failed to give reliable information about the decay of the 
perturbations after a large time, owing, it is believed, to flow separation from the 
sharp corners of the wedges which constituted an additional source of disturbance 
to the shock waves. 

1. Introduction 
When a propagating shock wave enters a diverging, converging or parallel 

channel, it is observed, under certain conditions, that the shock always meets the 
channel walls perpendicularly and tends to a state of uniform curvature. Thus, on 
entering a converging or diverging channel the shock tends to cylindrical form, 
and on entering a parallel channel it tends to plane form. 

Perry & Kantrowitz (1951) have noticed that as a shock wave goes from a 
parallel channel to a converging channelit becomes adjusted to the new conditions 
very rapidly and passes from plane to cylindrical form in a very short distance. 
It is also commonly observed that the shock wave produced by bursting the 
diaphragm in a shock tube attains a plane form after travelling only a few shock- 
tube diameters, yet it is far from plane when first formed after rupture of the 
diaphragm. The phenomenon of equalization of curvature along a propagating 
shock wave has been termed ' shock-wave stability '. The experiments described 
in this paper were designed to measure the stability of an initially plane shock 
wave and to compare it with the theoretical predictions of Freeman (1957). 
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A qualitative explanation of shock-wave stability may be given by considering 
what occurs when a plane shock propagating along a parallel channel encounters 
a disturbance on one wall of the channel. For simplicity suppose that the distur- 
bance is a symmetrical wedge (figure l a ) .  As the shock meets the face AB, a 
cylindrical compression pulse is formed, and the part of the shock between the 
junction of the pulse and the face AB of the wedge is diffracted. This part of the 
shock is curved and meets AB perpendicularly. For this pattern to be formed the 
wedge angle S must not exceed a certain value which depends on the strength of 
the incident shock wave. It will be assumed that 6 is always small enough to give 
rise to the pattern shown in figure 1 a. This pattern grows uniformly in time. The 

t t 

FIGURE 1. Illustration of shock-wave stability. 

diffracted portion of the shock eventually reaches the apex B of the wedge. The 
shock is there further diffracted, and an expansion pulse is formed as shown 
in figure 1 b.  Finally the shock reaches the corner C of the wedge, and another 
compression pulse is formed, the shock again being diffracted. Each superimposed 
shock diffraction pattern grows uniformly with time; therefore the curvature at 
each point of the diffracted part of the shock must decrease with time. The effect 
of reflexion of the pulses at  the channel walls is taken into account by introducing 
images of the wedgeinthewalls. Thus, theshapeof the shock propagating along the 
uniform part of the channel is a combination of superimposed diffraction patterns. 
However, each separate pattern becomes flatter as the shock propagates and the 
shock becomes plane. Although only a simple disturbance has been considered, 
the argument is readily extended to the case of a more complex disturbance. 

The phenomenon of shock-wave stability has been treated theoretically by 
Freeman (1957). He considered a plane shock wave propagating along a parallel 
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FIGURE 2. The problem treated by Freeman (1957). 

between [, the perturbation of the shock wave from plane at  any point, m d  the 
co-ordinates ( 6 , ~ )  as in figure 2 is obtained for c/b 9 1: 

where 

OD (-l)nsinn/3 OD (-1)mcosn/3 - c  
n = l  n* E(P) = c 

n=l  n* 
, (3) 

S(MZ- 1)  * 
k1=[ 7NJ * 

Here f2 is a function of Ms (the Mach number of the undisturbed shock wave with 
respect to the velocity of sound ahead of it) and has been given previously by 
Freeman. Also, a, is the velocity of sound behind the shock wave. 

The functions F in (1) represent two waves travelling in opposite directions 
along the shock wave. These waves are due to the disturbances arising from the 
upper and lower wedges and their respective images. 

In  connexion with this problem, another effect must be considered. Suppose 
that the shock travels from the position AA' to BB' (figure 2) in the same time 
that it takes the junction between the cylindrical compression pulse and the 
shock wave to travel along the shock a distance equal to the channel width. Then, 
neglecting the depth of the wedges, when the shock reaches the position BB' the 
compressions arising at  A and A' will just reach B' and B respectively and will 
coincide with the expansion pulses arising at the apices of the wedges. Similarly, 
when the shock reaches the position CC' the compression and expansion pulses 
already formed will coincide with the further compression pulses arising at  C and 
C'. According to the linearized theory, the strength of each compression pulse is 
proportional to 6 and the strength of each expansion pulse is proportional to 26. 
Thus, for c / b  9 1 where the compression and expansion pulses tend to coincide 
over their whole fronts, the compressions will be annulled by the expansions, and 
therefore f = 0. 
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It can readily be shown that, for this condition of cancellation to hold, 
(a lk l /U)  ( l lb)  = 2n, where n is an integer. In  fact, the expression for 6 given by 
(1) is the leading term of an asymptotic expansion, provided that the above con- 
dition of cancellation does not hold. When the above condition does hold, the 
next highest term in the expansion becomes of greatest importance, in which case 
the decay of the perturbations would be more rapid than indicated by (1). 

On the other hand, if the shock travels from AA' to CC' in the same time as the 
junction between the first cylindrical compression pulse and the shock wave takes 
to travel the width of the channel, then the compression pulses arising at A and A' 
tend to reinforce those arising at C' and C respectively. In  this case, the distor- 
tions of the shock wave due to the two wedges are superimposed to give a larger 
distortion. The condition for this reinforcement to occur is (alkl /U) (Zlb) = 2n + 1. 

T /  

2. Apparatus and experimental procedure 
The phenomenon of shock-wave stability was investigated by allowing plane 

shock waves produced in a shock tube to travel along a parallel channel with 
symmetrical wedges on each wall as in figure 2 .  By taking schlieren photographs 
of different shock waves, all of the same-or  very nearly the same-strength, at  
various values of g, the time-history of the passage of a particular shock through 
the channel could be deduced. 

Low pressure 

(i) The shock tube and instrumentation 

The shock tube used is shown diagrammatically in figure 3. The internal dimen- 
sions of the cross-section were 5.875 in. by 1.500in. Air was used in the tube. The 
high-pressure section of the tube was left open to the atmosphere and the low- 

pressure section was brought to the desired pressure by a rotary pump. The high- 
and low-pressure sections were separated by a cellophane diaphragm 0-001 5 in. 
thick. On bursting the diaphragm, a shock wave propagates into the low-pressure 
section of the tube. 

The velocity of the shock wave wits found by measuring the time taken by the 
shock to travel between two stations 1 ft. apart. Each timing station consisted of 
a small schlieren system with a beam of light across the tube restricted by a narrow 
vertical slit. The beam, after being focused on a knife-edge, was incident on a 
photomultiplier. Each small schlieren system was so adjusted that the passage 
of the shock wave caused light to be deflected off the knife-edge on to the photo- 
multiplier. The resulting signal from the first timing station started an electronic 
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binary counter registering microseconds, and the signal from the second station 
stopped the counter. The velocity of the shock wave was then readily deduced. 

The signal from the second timing station also actuated an electronic delay 
circuit that could be preset to trigger a spark light source at the working section 
of the tube a t  any desired time after the shock had passed the second timing 
station. The spark gap was the light source for a schlieren system at the working 
section of the tube; thus, schlieren photographs of shock waves at various 
positions in the working section could be obtained. 

(ii) The schlieren system at the working section 

The schlieren system is shown diagrammatically in figure 4. The source of light 
was provided by the discharge across a spark gap of an 0-25pF condenser charged 
to 10,000 V. The light was focused on the first knife-edge by the lens L, and then 
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FIGURE 4. Diagram of schlieren system. 

collimated by the lens L,. The collimated beam passed through the working 
section of the shock tube and was then reflected by the concave mirror M, which 
brought the light to a focus at  the second knife-edge. The light then passed into a 
camera which was focused on the working section of the shock tube. 

(iii) The wedge systems 

One wedge system is shown diagrammatically in figure 5. This was made from 
ground steel and the whole unit could slide into the shock tube where it could be 
clamped at  any desired position relative to  the working section. 

After a series of pictures had been obtained with the wedges in one position the 
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whole assembly could be moved to another position and a further series of pictures 
obtained, thus extending the range of < beyond the diameter of the working- 
section windows, over which information about the behaviour of the shock could 
be recorded. It was also necessary to have a second and longer wedge system in 
order to obtain pictures of the flow at distances from the wedges greater than the 
length of the first wedge system. 

The wedges were designed to satisfy as far as possible the conditions assumed 
in Freeman's linearized theory. In  this respect a compromise had to be made: 
wedges of very small angle, satisfying the conditions of linearized theory, are 
difficult to make; furthermore, it would be dificult to measure accurately the 
small distortions in the shock wave caused by wedges of very small angle. 
The wedges used had an angle of 11.3", and the dimensions and spacing of the 
wedges was such that the condition for reinforcement of the disturbances from 
each wedge held approximately over the range of shock-wave Mach numbers 
investigated . 

(iv) Measurement of shock-wave shapes 

The co-ordinates of the shock waves were measured directly from the film records 
by means of a measuring microscope equipped with a travelling stage movable 
in two perpendicular directions. The positions of the compressions travelling 
along the shock waves were also noted, except in the cases of shocks along distance 
past the wedges when the compressions become too weak to be observable. 

It was found by experience that any measurement could be repeated with an 
accuracy of better than 0.001 in. An estimate of the setting error of the measuring 
microscope is 0.0005 in., which corresponds to & 0.0003 channel widths. 

3. Results 
Shock waves of Mach numbers 1.165, 1.41 and 1.60 were investigated. 

A sequence of photographs showing a shock wave of Mach number 1.41 passing 
over the wedges and along the parallel channel is shown in the composite picture 
of figure 6, plate 1. The numbers below the picture give the distance in channel 
widths along the channel measured from the trailing edges of the wedges. 

The results obtained by plotting the measured shock-wave co-ordinates are 
shown in figure 7a.  In  this picture the scale in the direction along the channel 
has been made 10 times greater than the scale perpendicular to the channel, thus 
serving to emphasize the shock-wave perturbations. It can be seen from figure 6, 
plate 1, that the compression waves arising from the leading edge of one wedge 
and the trailing edge of the opposite wedge are very close together on the shock 
wave, indicating that the condition for reinforcement holds very nearly. The 
actual shape of the shock wave a t  any instant depends on the positions of the 
compression waves. 

Some idea of the rapidity with which the shock tends to plane form may be 
gained from figure 7a. Over the length of the channel shown (approximately 
3 channel widths) the compressions travel across the channel 13 times, and the 
maximum perturbation of the shock at the end of this short distance is only about 
one-tenth the perturbation when the shock is just past the wedges. 
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4. Comparison between theory and experiment 
The rather complicated function denoted by P in equation (1)  and given 

explicitly in equations (2) and (3) may be represented adequately by a sine curve 
provided that (a,lc,/U) ( l / b )  is not too far removed from unity, i.e. if the condition 
for reinforcement is realized. For the three shock-wave Mach numbers investi- 
gated, (a,k,/ U )  ( l /b )  was close enough to unity to render the above approximation 
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FIGURE 7a. Measured shock wave co-ordinates for M ,  = 1.41. 
FIGURE 7 b. Shock wave co-ordinates calculated using Lighthill's theory. 

The scale in the direction along the channel is 10 times the perpendicular scale. 

a k  1 
1 1 -  

M8 U b  Approximate form for P(a) 
1.165 0.799 5.11 sin (a-3.91) 

1.60 0.965 5.64 sin (a - 3.91) 

TABLE 1 

1-41 0.952 5.64 sin (a- 3.91) 

for P(a) valid. The values of (a,k,/U) ( l / b )  and the corresponding values of F(a)  
for the three shock-wave Mach numbers investigated are shown in table 1. It is 
seen that, for the shock-wave Mach numbers under consideration, P(a) has the 
approximate form A sin (a  - 3.91). On substituting this approximate value for 
F(a)  in equation ( I ) ,  the following expression for the perturbation is obtained: 

According to this expression, the perturbation is a standing wave in the form of 
a cosine curve. 

Direct comparison between the theoretical expression (4) and the experimental 
results cannot be made because the position of the plane unperturbed shock from 
which the perturbations must be measured is not known accurately enough. In  
order to overcome this difficulty, a quantity called the 'total perturbation' has 
been introduced. This is defined as the difference between the extreme positions 
of a perturbed shock wave measured in the direction of propagation (figure 8). 

The theoretical expression for the magnitude of the total perturbation 11. is 
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where all lengths have been made non-dimensional by dividing by the channel 
width 2 b. In  this system, x is the distance along the channel measured from the 
trailing edges of the wedges. Experimentally, the total perturbation is readily 
determined from the plotted shock shapes. 

4.1. Analysis of the experimental results 

For comparison with theory, a function was chosen of a form similar to the 
theoretical expression, and the parameters in this function were evaluated to 
give the best fit to the experimental results by the method of least squares. 

FIGVRE 8. Sketch defining total perturbation of shock wave. 

The function chosen to fit the experimental results was 

where n, G, m and p are the parameters to be evaluated. m and p are easily deter- 
mined; on the other hand, to evaluate G and n it was found convenient to 
minimize C(1og $-log $')2, where $' is the measured total perturbation. 
Evidently, the values of G and n obtained in this way would not be exactly the 
same as those found by minimizing C(@ - @')2, but they led to curves which fitted 
the experimental points quite well. 

This analysis was carried out for shock waves of Mach numbers 1-41 and 1-60, 
but proved unsuccessful for shock waxes of Mach number 1.165 (see figures 9-1 1). 
From the experimental results for M, = 1.165 (figure l l ) ,  it can be seen that the 
period of oscillation of total perturbation did not remain constant; therefore it was 
impossible to find constant values for m and p ,  and the analysis failed. 
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The results for M, = 1.41 and 1.60 in figures 9 and 10 show that for values ofx 
greater than about 4 the measured perturbations behaved in an erratic manner 
and ceased to decrease with increasing x. Possible reasons for this behaviour will 
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FIGURE 9. Graph of total perturbation ws distance. 0,  Experimental results; -, fitted 
curve; ---, theoretical curve. 
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FIGURE 10. Graph of total perturbation ws distance. 0, Experimental results ; -, fitted 
curve; ---, theoretical curve. 

be discussed later. These anomalous results were not used in the analyses, and the 
fitted curves are shown extending over the results that were used. The perturba- 
tions of the shock waves before the compressions from the trailing edges of the 
wedges had travelled across the channel once were not included in the analyses 
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either for, at such an early stage in the stabilization of the shock wave, the regions 
of the shock near the junctions of the compressions and the shock had not 
expanded far enough to affect much of the shock wave. 

The results found for n and G at M, = 1.41 and 1.60 are tabulated in table 9 
together with the theoretical values of these quantities given by Freeman's 
theory. 

In  assessing how well the ' best ' curves fit the experimental results, the errors 
in the determination of the total perturbations must be considered. There are 
two sources of error: (a )  Eachpoint on thegraphis determined from measurements 

X +  

FIGURE 11. Graph of total perturbation vu8 distance. 0, Experimental results; 
-, fitted curve; ---, theoretical curve. 
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M* Experiment Theory Experiment Theory 
1-41 1-45 1.5 0.066 0.167 
1.60 1.65 1.5 0.090 0.273 

TABLE 2 

of different shock waves; the Mach numbers of these shock waves all agree to 
better than 1 yo. The effect of the small scatter in shock-wave Mach numbers was 
estimated by obtaining pictures of shock waves of the same nominal Mach 
number at the same position in the channel. This was done for J !  = 1-60, and the 
effect on the perturbation of the scatter in Mach number was found to be very 
small indeed, much less in fact than the deviation of some of the experimentally 
determined points from the fitted curve. ( b )  The error in the actual measure- 
ment of the perturbation has already been discussed. This is less than the 
deviation of some of the points from the fitted curve. 

It seems likely that the form of the' function chosen to fit the experimental 
results is too simple to give an adequate description of the phenomenon. It should 
be borne in mind that the form of the function chosen to fit the experimental 
results is the same as the form of the theoretically derived function which is valid 
only at a large number of channel widths beyond the wedges. Although the 
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FIGURE 12 (plate 2 ) .  Photograph showing diffusion of expansion wave. 

FIGURE 13 (plate 2 ) .  Photograph showing wake behind shock wave. 

LAPWORTH 

Plate 2 
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theory is valid only at  large distances beyond the wedges, there is agreement with 
experiment in certain respects. The points on which theory and experiment agree 
are summarized below : 

( a )  The period of oscillation of the theoretical and experimental values of 
~ compare well. 

( b )  The experimentally determined law for the decay of the perturbation with 
distance compares well with the law given by theory, viz. [cc c-4. 

The points of difference between experiment and theory are as follows: 
(c)  The theoretical expression for the perturbation given by equation (4) shows 

that the shock shape should be a cosine curve for the shock-wave Mach numbers 
under consideration. This was not observed experimentally. The theory also 
indicates that the shock perturbations should become small, i.e. O ( @ ) - f ,  a t  
regular intervals along the channel; observation showed that, although the shock 
did not become plane, the perturbations did become very small at regular 
intervals. 

(d) Thereis aphase difference between the theoretical and experimentalresults. 
(e )  The maximum total perturbations predicted by theory are considerably 

greater than those observed experimentally. 

Comparison between the observed shock shapes and those given by direct application 
of Lighthill’s theory of diffraction of blast 

Freeman’s theory is based on Lighthill’s theory but holds good only for x/b $ 1. 
Direct application of Lighthill’s theory may be expected to give better agreement 
with experiment near the origin. Shock shapes were calculated for M, = 1.41 using 
Lighthill’s theory: these calculated shock shapes are shown in figure 7 b, where 
they can readily be compared with the experimental shapes of figure 7a. (The 
dotted lines are expansion pulses which arise from the apex of each wedge.) 

From figure 7 b it is seen that the curvatures of the theoretically determined 
shock shapes tend to be concentrated in smaller regions of the shock waves than 
observed in the experiments. This is due to the fact that the theory, which is 
linear, treats the expansion waves as localized pulses travelling along the shock 
wave whereas, as can be seen from figure 12, plate 2, the expansion wave tends to 
become diffuse and meets the shock over a region of its length rather than at one 
point. This spreading out of the expansion waves (which is explained, at  least 
qualitatively, by the non-linear theory of Whitham 1957) tends to make the 
curves in the shock shape smoother than those given by the linearized theory. 

4.2. Discussion on the irregular character of the perturbations at the 
largest values of x investigated 

From figures 9-1 1 it can be seen that the perturbations cease to decay in a regular 
manner beyond a certain distance along the channel. It is here suggested that 
this erratic behaviour may be attributed to the formation of a wake at  the apex 
of each wedge after the passage of the shock wave. These wakes will lead to 
attenuation of ths shock wave since they represent sinks of energy. It has been 
shown theoretically by Hollyer (1956), and by Trimpi & Cohen (1955), that the 
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growth of a boundary layer on the shock tube walls can account for observed 
shock-wave attenuation. The theoretical work treats the problem one-dimen- 
sionally and serves to give an overall attenuation of the shock wave, whereas in 
the present discussion interest centres on the two-dimensional effects of the wakes 
on the shock wave. A picture of the separated flow over the wedges is shown in 
figure 13, plate 2. This picture shows the situation 685,usec after a shock wave of 
Mach number 1.41 had passed the apexes of the wedges. The well-developed wake 
can be observed and it is to be expected that this will affect the shock wave 
propagating along the channel. A certain time must elapse after the passage of 
the shock wave before a wake is formed. Whilst the wake is forming and also 
when it has formed, the main shock wave will be attenuated by propagation of 
expansion waves from the wake. This process will take a certain length of time 
after the shock wave has passed the wedges; thereforeit may be expected that any 
effect the wake would have on the shock would only become apparent after the 
shock wave had travelled some distance along the channel. It is in fact observed 
that the results become erratic at a certain distance past the wedges. 

The author is indebted to Prof. P. R. Owen and Prof. M. J. Lighthill for 
suggesting the experiment. Dr N. C. Freeman gave valuable help in discussions 
on the theoretical aspects of the problem. During the period of research the author 
was assisted by a grant from the Department of Scientific and Industrial 
Research. 
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